

Brief History of Fun4All
ÅDevelopment started in 2002, in use by PHENIX from 2003 on (reconstruction and analysis of

Run3 data)

ÅNeeded to get many subsystems who developed their code independently and without
coordination under one umbrella

ÅDevelopment driven by reconstruction and analysis needs ςƴƻǘ ōȅ άōŜŀǳǘȅέ ƻǊ ǎƻƳŜ ŀōǎǘǊŀŎǘ
design considerations

ÅDesignedfor agile development in interactive andbatch use

ÅModularity is key ςcomponents can be added/modified/removed without having to modify bits
and pieces all over the place

ÅPlenty of functionality added over the years, some of them waiting to be rediscovered

Å2011 Adding Geant4 as subsystem

ÅSplit from PHENIX in 2015, lots of cleanup and modernization

ÅMarch2019 Fork for EIC simulations, addition of eicspecific packages
ÅLargefractionof full simulationsŦƻǊ ¸w ŘƻƴŜ ǿƛǘƘ Cǳƴп!ƭƭ όάŦƛƴŘ Cǳƴп!ƭƭέ ǊŜǎǳƭǘǎ ƛƴ мп Ƙƛǘǎύ

And ECCEhasalready a fork as well:
https://github.com/ECCE-EIC/coresoftware/tree/master/offline/framework

4/2/2021 ECCE simulation workshop 2

https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/offline/framework

Fun4All Framework in a nutshell

Node Tree(s)

Analysis Modules
DST

Raw Data

HepMCHistogram Manager

Root File

Calibrations

PostgreSQL DB

Fun4AllServerYou

DST

Raw Data

HepMC/Oscar

Empty

EIC smear

File

Thatôs all there is to it, no backdoor communications ïsteered by ROOT macros

Input Manager 1

Input Manager 2

Input Manager n

Χ

Output Manager 1

Output Manager 2

Output Manager n

Χ

What Fun4All does for us
ÅRead input files (many different types)

ÅWrite output files (different types, automatic saving of selected
data objects)

ÅSomewhat manages the Node Tree - our storage for data objects
(more later)

ÅCall the analysis/reconstruction modules in the order in which
they were registered (correct ordering is responsibility of the
user)

ÅThe analysis is a continuous chain from the event generator/raw
data up to jet reconstruction

ÅMake snapshots at any state of the reconstruction/analysis

ÅAccess to calibrations

Fun4All has been our workhorse for 18 years, running raw data
reconstruction, analysis, simulations and embedding

4/2/2021 ECCE simulation workshop 4

Simulations

Å GEANT4 based (no GEANT3, no virtual Monte Carlo)
Å Currentversion10.06.p02, default physics list FTFP_BERT
Å Fully integrated into our analysis chain as Reconstruction Module
Å Modular design ςall detectors are self contained
Å Configured on the macro level
Å Generic detectors (boxes, cylinders, cones) exist
Å sPHENIXsubdetectors (and a lot of ECCE) fully implemented
Å 9 years of development

Tutorials:
https://github.com/ECCE-EIC/ tutorials

4/2/2021 ECCE simulation workshop 5

https://github.com/ECCE-EIC/tutorials

G4 program flow within Fun4All
Fun4AllServer

PHG4Reco

N
o

d
e

 tre
e

Interface Detector 1 Construct() ĄGeometry

Stepping Action (Hit extraction)

Interface Detector 2 Construct() ĄGeometry

Stepping Action (Hit extraction)

G
e

a
n
t4

Digitisation

Tracking,Clustering

RCdaq

WŜǘ CƛƴŘƛƴƎΣ ¦ǇǎƛƭƻƴǎΣ tƘƻǘƻƴǎΣΧ

calls

dataflow

Setup

Event generator (input file, single particle, pythia8)

Output Files

Initializes Geant4 before detectors are added

Raw Data

Modular: Each
detector is its
own entity
providing the
flexibility
needed for
complex
setups

Generic detectors
like boxes,
cylinders, cones
exist and can be
configured on a
macro level

Volumes can be
put into world or
mother volumes

The processing is
done by chaining
up modules. At
every stepthe
state of the Node
Tree can be saved
and the analysis
can pick up where
it left

Common reco
for raw and
simulated data

4/2/2021 6

Currently implemented event generators

Djangoh

PEPSI

Rapgap

PYTHIA

Milou

LEPTO

DPMJet

gmc_trans

ÅVia Eic-Smear interface (e-p/e-A)

Sarteas seen by EIC detector

Pythia8 in a 6
layersilicon
detector mockup
and 2T field

Very peripheral heavy ion
collision from hijing

Full Truth information preserved: anything can be traced back to the input particle

ÅVia Fun4All
Å Hijing
Å Pythia6
Å Pythia8
Å Sartre
Å Jetscape(needs work)
Å Generic HepMC2/OSCAR
Å Single Particle Generators
Å Embedding in existing events

10 GeV Au on
water phantom
(NSRL)

Recap: GEANT steps

GEANT propagates particles one step at a time. The step size is
determined by the physics processes associated with the current
particle or when a boundary between volumes is crossed

After each stepthe user stepping method is called with a pointer
to the current volume which has access to the full information
όŜƴŜǊƎȅ ƭƻǎǎΣ ǇŀǊǘƛŎƭŜ ƳƻƳŜƴǘǳƳ ŀǘ ōŜƎƛƴƴƛƴƎ ŀƴŘ ŜƴŘ ƻŦ ǎǘŜǇΣ Χύ4/2/2021 8

hǳǊ DпIƛǘǎ όȅƻǳΩƭƭ ƘŜŀǊ ǳǎ ǘŀƭƪƛƴƎ ŀōƻǳǘ ǘƘŜƳ ŀ ƭƻǘύ
In our stepping method we add the energy loss in each volume and
store the entry and exit coordinates and time (and subdetector specific

ƛƴŦƻ ƭƛƪŜ ƛƻƴƛȊŀǘƛƻƴ ŜƴŜǊƎȅΣ ƭƛƎƘǘ ƻǳǘǇǳǘΣΧύ

We also keep the ancestry for G4Hits so any hit can be traced back to a
primary particle. To reduce sizewe do not store particles which do not leave

G4Hits and are not in the ancestry of a particle which created a G4Hit

G4Hit

4/2/2021 ECCE simulation workshop 9

Creating your own Detector

Examples implementing this beautiful box with a half pipe hole including macros:
https://github.com/sPHENIX-Collaboration/g4exampledetector

3 classes mandatory
Å Subsystem
Å Detector
Å SteppingAction

Template Example introduces script to add detector:
CreateG4Subsystem.pl <Detector Name>
options are:
--all : Also create autogen.sh, configure.ac and Makefile.am
--overwrite :overwrite existing files (handle with care, we only have snapshots of $HOME)
https://github.com/sPHENIX-Collaboration/g4exampledetector/tree/master/template

You can then add your
detector to our existing
setups on the macro level

Optional
Å Use of parameters
Å DisplayAction

4/2/2021 ECCE simulation workshop 10

https://github.com/sPHENIX-Collaboration/g4exampledetector/tree/master/template

[ŜǘΩǎ ǎƛƳǳƭŀǘŜ ŀ ŎŀƭƻǊƛƳŜǘŜǊ

ÅPurelymacrobased,usinggenericblocks

Å20 layerShashlik
Å0.2cm Tungsten

Å0.5 cm Scintillator

ÅWork effort 30 minutes
ÅMostly fixing typos

4/2/2021 ECCE simulation workshop 11

double xsize= 20.;
double ysize= 20.;
double zsizeW= 0.2;
double zsizeSc= 0.5;
for (int i=0; i<20; i++)
{
PHG4BlockSubsystem *boxW= new PHG4BlockSubsystem("boxW",i);
boxW->set_double_param("size_x",xsize);
boxW->set_double_param("size_y",ysize);
boxW->set_double_param("size_z",zsizeW);
boxW->set_color(0,1,0,0.8);
boxW->set_double_param("place_z",zsizeW/2.+zstart);
boxW->set_string_param("material","G4_W"); // material of box
boxW->SetActive();
boxW->OverlapCheck(1);
boxW->SuperDetector("boxW");
g4Reco->registerSubsystem(boxW);
zstart+= zsizeW;
PHG4BlockSubsystem *boxSc= new PHG4BlockSubsystem("boxSc",i);
boxSc->set_double_param("size_x",xsize);
boxSc->set_double_param("size_y",ysize);
boxSc->set_double_param("size_z",zsizeSc);
boxSc->set_color(1,0,0,0.6);
boxSc->set_double_param("place_z",zsizeSc/2.+zstart);
boxSc->set_string_param("material","G4_POLYSTYRENE"); // material of box
boxSc->SetActive();
boxSc->OverlapCheck(1);
boxSc->SuperDetector("boxSc");
g4Reco->registerSubsystem(boxSc);
zstart+= zsizeSc;

}

[ŜǘΩǎ ǎƛƳǳƭŀǘŜ ŀ ŎŀƭƻǊƛƳŜǘŜǊ

4/2/2021 ECCE simulation workshop 12

1GeV/c Electron 1GeV/c ̄ -

You want to design your EMCalthat electrons/photons have a high probability to shower (many radiation lengths)
But hadrons should not (few interaction lengths) ĄŘƻƴΩǘ ǳǎŜ ǘƻƻ Ƴŀƴȅ ŀōǎƻǊōŜǊǎ

How is our calorimeter doing for 1GeV/c particles?

ÅRed: energy deposited in Scintillator

ÅGreen: Energy deposited in absorber

ÅSize of our calorimeter is roughly right
ÅWe catch all electrons
ÅWe contain the electron energy
ÅMost Pionsbasically leave a MIP signal
ÅSome do leave an electron like signal in

the scintillator

We are done ςnot bad for 1 hour of
work in the morning of the workshop

4/2/2021 ECCE simulation workshop 13

Addour calorimeterto a detectorsetup

4/2/2021 ECCE simulation workshop 14

New detectors canbe added on the macro level ςthe G4_User.C provides hooks for that
Not a single compilation was necessary for all that

The Node Tree
ÅThe Node Tree is at the center of the Fun4All software universe (but it is more or less invisibleto
ȅƻǳύΦ LǘΩǎ ǘƘŜ ǿŀȅ ǿŜ ƻǊƎŀƴƛȊŜ ƻǳǊ Řŀǘŀ ŀƴŘ ƳŀƪŜ ǘƘŜƳ ŀŎŎŜǎǎƛōƭŜ ǘƻ ƳƻŘǳƭŜǎ

ÅIt is NOT a Root TTree

ÅWe have 3 different Types of Nodes:

ÅPHCompositeNode: contains other Nodes

ÅPHDataNode: contains any object

ÅPHIODataNode: contains objects which can be written out to DST

ÅPHCompositeNodesand PHIODataNodescan be saved to a DST and read back

ÅThis DST contains root TTrees, the node structure is saved in the branch names. Due to Roots
limitations not all objects can become PHIODataNodes(smart pointersseemto be problematic ς
looking at ACTS track storage).

ÅWe currently save 2 root trees in each output file, one which contains the eventwiseinformation, one
which contains the runwiseinformation

ÅInput Managers recreate PHCompositeNodelayout and put objects as PHIODataNodeson the node
tree, output managers save layout and selected PHIODataNodesto a file.

ÅFun4All can manage multiple independent node trees

4/2/2021 ECCE simulation workshop 15

Access to Data Objects,
understanding our Node Tree

TOP

RUN DST PAR PRDF

FIELD_CONFIG

PIPE
G4GEOPARAM_PIPE

CYLINDERGEOM_PIPE

INTT
G4GEOPARAM_INTT

G4CELLPARAM_INTT

MVTX G4GEOPARAM_MVTX

PHG4INEVENT

TPC
G4HIT_ABSORBER_TPC

G4HIT_TPC

MVTX G4HIT_MVTX

PIPE G4HIT_PIPE

FIELD_MAP

INTT

G4GEO_INTT

CYLINDERGEOM_INTT

MVTX G4GEO_MVTX

PIPE G4GEO_PIPE

G4CELLGEO_INTT

PHDataNode

PHCompositeNode

PHIODataNode

PhoolNode Tree in Fun4All

Node Tree under TopNodeTOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
INTT (PHCompositeNode)/

G4HIT_INTT (IO,PHG4HitContainer)
TPC (PHCompositeNode)/

G4HIT_ABSORBER_TPC (IO,PHG4HitContainer)
G4HIT_TPC (IO,PHG4HitContainer)

CEMC_ELECTRONICS (PHCompositeNode)/
G4HIT_CEMC_ELECTRONICS (IO,PHG4HitContainer)

CEMC_SPT (PHCompositeNode)/
G4HIT_CEMC_SPT (IO,PHG4HitContainer)

G4HIT_CEMC (IO,PHG4HitContainer)
G4HIT_ABSORBER_CEMC (IO,PHG4HitContainer)
HCALIN (PHCompositeNode)/

G4HIT_ABSORBER_HCALIN (IO,PHG4HitContainer)

Χ

TOP: Top of Default Node Tree
Creation and populating of other
node trees is possible (used for
embedding)

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

4/2/2021

PhoolNode Tree in Fun4All

Node Tree under TopNodeTOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
INTT (PHCompositeNode)/

G4HIT_INTT (IO,PHG4HitContainer)
TPC (PHCompositeNode)/

G4HIT_ABSORBER_TPC (IO,PHG4HitContainer)
RUN (PHCompositeNode)/

FIELD_CONFIG (IO,PHFieldConfigv1)
PIPE (PHCompositeNode)/

G4GEOPARAM_PIPE (IO,PdbParameterMapContainer)
CYLINDERGEOM_PIPE (IO,PHG4CylinderGeomContainer)

MVTX (PHCompositeNode)/
G4GEOPARAM_MVTX (IO,PdbParameterMapContainer)

INTT (PHCompositeNode)/
G4GEOPARAM_INTT (IO,PdbParameterMapContainer)

Χ

DST and RUN Node: default for I/O
ωDST ςeventwise
ωRUN - runwise

Objects under the DST node are reset after
every event to prevent event mixing. You
can select the objects to be saved in the
output file. Subnodes like SVTX are saved
and restored as well. DST/RUN nodes can
be restored from file under other TopNodes
ROOT restrictions apply:
Objects cannot be added while running to
avoid event mixing

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

4/2/2021

PhoolNode Tree in Fun4All
Node Tree under TopNodeTOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
HCALIN (PHCompositeNode)/

G4HIT_ABSORBER_HCALIN (IO,PHG4HitContainer)
G4HIT_HCALIN (IO,PHG4HitContainer)
G4CELL_HCALIN (IO,PHG4CellContainer)
TOWER_SIM_HCALIN (IO,RawTowerContainer)
TOWER_RAW_HCALIN (IO,RawTowerContainer)
TOWER_CALIB_HCALIN (IO,RawTowerContainer)
CLUSTER_HCALIN (IO,RawClusterContainer)

BBC (PHCompositeNode)/
BbcVertexMap(IO,BbcVertexMapv1)

TRKR (PHCompositeNode)/
TRKR_HITSET (IO,TrkrHitSetContainer)
TRKR_HITTRUTHASSOC (IO,TrkrHitTruthAssoc)
TRKR_CLUSTER (IO,TrkrClusterContainer)
TRKR_CLUSTERHITASSOC (IO,TrkrClusterHitAssoc)

Χ

Type of Node is given (IO is PHIODataNode)

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

Class of Data IO Object is given
(you will need to know this
when accessing the data)

Caveat: You loose ownership once an
object is put on the node tree. Fun4All
deletes the node tree when cleaning
up. Deleting nodes is not supported (if
you give me a good reasonLΩƭƭ ǿƻǊƪ ƻƴ
that)

4/2/2021

PhoolNode Tree in Fun4All

Node Tree under TopNodeTOP
TOP (PHCompositeNode)/

DST (PHCompositeNode)/
PHG4INEVENT (PHDataNode)
PIPE (PHCompositeNode)/

G4HIT_PIPE (IO,PHG4HitContainer)
MVTX (PHCompositeNode)/

G4HIT_MVTX (IO,PHG4HitContainer)
RUN (PHCompositeNode)/

FIELD_CONFIG (IO,PHFieldConfigv1)
PIPE (PHCompositeNode)/

G4GEOPARAM_PIPE (IO,PdbParameterMapContainer)
CYLINDERGEOM_PIPE (IO,PHG4CylinderGeomContainer)

MVTX (PHCompositeNode)/
G4GEOPARAM_MVTX (IO,PdbParameterMapContainer)

INTT (PHCompositeNode)/
G4GEOPARAM_INTT (IO,PdbParameterMapContainer)

PAR (PHCompositeNode)/
FIELD_MAP (PHDataNode)
PIPE (PHCompositeNode)/

G4GEO_PIPE (PHDataNode)

Χ

Users can add their own PHCompositeNodes
Under the TOP Node. But then resetting the
objects is their responsibility.

The PAR node hold more complicated geometry
Objects which we do not want to save on DST

You will see this printout of the node tree
whenever the processing starts

Print it from the command line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

4/2/2021 ECCE simulation workshop

Your Analysis Module

ÅInit(PHCompositeNode *topNode): called once when you register
the module with the Fun4AllServer

ÅInitRun(PHCompositeNode *topNode): called whenever data from a
new run is encountered

ÅProcess_event(PHCompositeNode *topNode): called for every event

ÅResetEvent(PHCompositeNode *topNode): called after each event is
processed so you can clean up leftovers of this event in your code

ÅEndRun(const int runnumber): called before the InitRunis called
(caveat the Node tree already contains the data from the first event of
the new run)

ÅEnd(PHCompositeNode *topNode): Last call before we quit

You need to inherit from the SubsysReco Baseclass
(offline/framework/fun4all/SubsysReco.h) which gives the methods
ǿƘƛŎƘ ŀǊŜ ŎŀƭƭŜŘ ōȅ Cǳƴп!ƭƭΦ LŦ ȅƻǳ ŘƻƴΩǘ ƛƳǇƭŜƳŜƴǘ ŀƭƭ ƻŦ ǘƘŜƳ ƛǘΩǎ

perfectly fine (the beauty of base classes)

If you create another node tree you can tell Fun4All to call your module
with the respective topNode when you register your modue4/2/2021 21

Writing your own
Analysis Module

Usage:
CreateSubsysRecoModule.pl <Module Name>
options:
--all : create also autogen.sh, configure.ac and Makefile.am
--overwrite :overwrite existing files

The Makefile.am and configure.ac do not contain the instructions needed for i/o classes
Sorry - you will still need to cut and paste this from existing sources

To get help, type: CreateSubsysRecoModule.pl

Creates <Module Name>.h and <Module Name>.cc with a cout in all available methods. Much
better starting point than cutting and pasting from an existing module

4/2/2021 ECCE simulation workshop 22

How to build a package
Å We use autoconf/automake(configure) to build our code
Å This does put some files into your source area, be careful what you commit

Å Each package (directory) is build by itself
Å You only have tobuild the package you are working on

Keep your source and build areas separately, use common install area

Source1 in <srcdir1>

Source2 in <srcdir2>

build1 in <builddir1>:
<srcdir1>/autogen.sh ςprefix=<installdir>
make install

build2 in <builddir2>:
<srcdir2>/autogen.sh ςprefix=<installdir>
make install

One install area in <installdir>

Use the full path so the debugger
can find the source file4/2/2021

How to use your compiled package
Å The default setup from the sphenixsetup scripts does not add your

installation area
Å ROOT6 is peculiar with finding includes
Å Sowe have a script to set up everything for your installation area:

Source1 in <srcdir1>

Source2 in <srcdir2>

build1 in <builddir1>:
<srcdir1>/autogen.sh ςprefix=<installdir>
make install

build2 in <builddir2>:
<srcdir2>/autogen.sh ςprefix=<installdir>
make install

One install area in <installdir>

Use the full path so the debugger
can find the source file

source $OPT_FUN4ALL/bin/setup_local.csh(or sh) <installdir>

4/2/2021

Debugging/Profiling ςuse professional tools

ÅgdbΥ ŦƛǊǎǘ ƭƛƴŜ ƻŦ ŘŜŦŜƴǎŜΣ ŎƻƳǇƛƭŜ ǿƛǘƘ /··C[!D{ҐΨ-g ςstd=c++мтΩ

ÅRuntime checks
Åvalgrind: finds most memory corruptions
Åinsure: rcf only - finds array boundary violations

Åstatic code analysers
ÅCppcheck
ÅCoverity
ÅScan-build

Details about these tools in our wiki:
https://wiki.bnl.gov/sPHENIX/index.php/Tools

cout

Profiling:

ÅCallgrind: wheredoesyourcodespendall its time?

ÅMassif:wheredid allthis memorygo?

https://wiki.bnl.gov/sPHENIX/index.php/Tools

Distribution

4/2/2021 ECCE simulation workshop 26

Containers are a solution for the problem to support many
ŎƻƳǇƛƭŜǊǎ ŀƴŘ h{Ωǎ ƎǳŀǊŀƴǘŜŜƛƴƎ ƛŘŜƴǘƛŎŀƭ ƻǳǘŎƻƳŜǎΦ /ŀƴ ōŜ
run on the OSG as is as well as HPC. Full development
possible in container

±aΩǎ ƻƴ ƭŀǇǘƻǇǎ Řƻ ǿƻǊƪ ŦƻǊ ǎƛƳǇƭŜ ǎŜǘǳǇǎ ƻǊ Ŧŀǎǘ eic-smear
ǘȅǇŜ ǎƛƳǳƭŀǘƛƻƴǎΣ ōǳǘ ŀǎ ǎƻƻƴ ŀǎ ȅƻǳ Řƻ άǊŜŀƭ D9!b¢п
ǎƛƳǳƭŀǘƛƻƴ Ǌǳƴǎέ ŦƻǊ ŘŜǘŜŎǘƻǊ ŘŜǎƛƎƴǎ ǊǳƴƴƛƴƎ ƻǾŜǊ млллΩǎ
(ƳƛƻΩǎ) of events and have to deal with calorimeter showers
that laptop approach reaches its limits quickly

